skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yufeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Insect-scale robots face two major locomotive challenges: constrained energetics and large obstacles that far exceed their size. Terrestrial locomotion is efficient yet mostly limited to flat surfaces. In contrast, flight is versatile for overcoming obstacles but requires high power to stay aloft. Here, we present a hopping design that combines a subgram flapping-wing robot with a telescopic leg. Our robot can hop continuously while controlling jump height and frequency in the range of 1.5 to 20 centimeters and 2 to 8.4 hertz. The robot can follow positional set points, overcome tall obstacles, and traverse challenging surfaces. It can also hop on a dynamically rotating plane, recover from strong collisions, and perform somersaults. Compared to flight, this design reduces power consumption by 64 percent and increases payload by 10 times. Although the robot relies on offboard power and control, the substantial payload and efficiency improvement open opportunities for future study on autonomous locomotion. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques. During flapping-wing flight, wings, hinges, and tendons of pterygote insects endure large deformation and high stress hundreds of times each second, highlighting the outstanding flexibility and fatigue resistance of biological structures and materials. In comparison, engineered materials and microscale structures in subgram micro–aerial vehicles (MAVs) exhibit substantially shorter lifespans. Consequently, most subgram MAVs are limited to hovering for less than 10 seconds or following simple trajectories at slow speeds. Here, we developed a 750-milligram flapping-wing MAV that demonstrated substantially improved lifespan, speed, accuracy, and agility. With transmission and hinge designs that reduced off-axis torsional stress and deformation, the robot achieved a 1000-second hovering flight, two orders of magnitude longer than existing subgram MAVs. This robot also performed complex flight trajectories with under 1-centimeter root mean square error and more than 30 centimeters per second average speed. With a lift-to-weight ratio of 2.2 and a maximum ascending speed of 100 centimeters per second, this robot demonstrated double body flips at a rotational rate exceeding that of the fastest aerial insects and larger MAVs. These results highlight insect-like flight endurance, precision, and agility in an at-scale MAV, opening opportunities for future research on sensing and power autonomy. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  3. The increasing popularity of video streaming and conferencing services have altered the nature of Internet traffic. In this paper, we take a first step toward quantifying the impact of this changing nature of traffic on the Quality of Experience (QoE) of popular video streaming and conferencing applications. We first analyze the traffic characteristics of these applications and of backbone links, and show how simple multipath routing may adversely impact application QoE. To mitigate this problem, we propose a new routing path selection approach, inspired by the TCP timeout computation algorithm, that uses both the average and variation of path load. Preliminary results show that this approach improves application QoE by on average 14% and packet latency by 11% for video streaming and conferencing applications, respectively. 
    more » « less
  4. null (Ed.)
    Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min −1 ). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg −1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min −1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots. 
    more » « less